
i

LabelScan: a Nutritional Label Accessibility App

Third Year Project

Martín Cuesta Allende

MEng (Hons) in Computer Science (Human
Computer Interaction)

Supervisor: Mary McGee Wood

ii

Abstract

This report discusses a project aimed to improve the accessibility of
physical nutritional labels for people with dyslexia and visual
impairments, creating an Android application for that purpose.
Nutrition labels contain very important information about the foods we
consume, but their design leaves behind those with dyslexia and those
with visual impairments. Despite digital technology, being ubiquitous
with modern life, no nutrition label standard aims to make information
accessible through any digital means. Because of this, an important
percentage of the general population is restricted access to nutritional
information.

This report will first discuss the conception and design of the application
using a user-centred design approach. This will be followed by a
discussion of how the software was developed, including the
technologies used and the challenges present in their implementation.
Finally, we will reflect on the achievements of the project, its possible
future development, its successes and failures, and what would have
been done differently a second time around.

iii

Acknowledgements

I wish to express my gratitude to my supervisor, Mary McGee Wood, for
her continued support and insightful feedback that helped me complete
and refine all aspects of this project. Additionally, I would like to thank
Roger Broadbent for his valuable time giving feedback on my project.

I would also like to thank my parents and siblings for their patience,
encouragement, and support, not only with this project, but life in
general.

I also want to thank my friends for paying attention to my ramblings and
supporting me in every crazy, life-changing project I start.

And finally, thank you to the countless other people that helped me get
where I am.

iv

Effect of lockdown and COVID-19 on the project

The COVID-19 pandemic and the several lockdowns it has provoked have
significantly affected this project, both in its design and development.
Indeed, this project consisted of developing an assistive app. As such, in
a normal year, I would have conducted extensive user testing. However,
due to the pandemic, this became impossible. While doing user-centred
design without having access to users was feasible, the resulting design
and application lacks user feedback, making user evaluation much more
difficult. As such, developing effective user experience was extremely
more difficult due to the lack of users caused by the COVID-19 pandemic.

Furthermore, COVID-19 moving the due dates for this project has
affected the quality of the final product. Indeed, there were multiple
planned features that I could not implement due to a lack of time. If the
deadline had been the same as previous years, the final product would
have had more features, creating a more polished, more complete, and
overall better application. Moreover, having the deadline pushed
forward made it clash with other important deadlines from other
subjects. Indeed, despite the two automatic extensions, deadlines for
this project coincided with those of other subjects regardless, leading to
having to juggle too many deadlines at once. Due to COVID-19, deadlines
for this project were moved forward, leaving less time to work on the
project and making it clash with other subjects, ultimately leading to a
less polished application.

v

Contents

Chapter 1 – Introduction .. 1

Chapter 2 - Background ... 2

Chapter 3 – Conception and Design .. 5

3.1 - Conception .. 5

3.1.1 – Finding an idea ... 5

3.1.2 –Improving previous solutions .. 6

3.2 – User Experience Design ... 7

3.2.1 – Gathering user requirements .. 7

3.2.2 – Modelling user requirements ... 9

3.2.3 – Mockups and Prototyping .. 10

3.3 – User Interface Design .. 12

3.3.1 – Design language .. 13

3.3.2 – An emphasis on typography .. 14

3.3.3 –Ensuring accessibility .. 17

3.4 – Iterative Design ... 18

Chapter 4 – Development ... 22

4.1 – Management of work ... 22

4.2 – Platforms ... 23

4.2.1 – Deployment platform .. 23

4.2.2 – Development environment ... 23

4.3 – Programming Language .. 24

4.4 – ML Kit ... 24

4.5 – User Interface ... 27

vi

4.5.1 – Building layouts ... 27

4.5.2 – Enhancing feedback .. 28

4.5.3 – Customisability and accessibility .. 29

4.6 – MPAndroidChart ... 29

Chapter 5 – Results .. 31

Chapter 6 – Evaluation .. 32

6.1 – Software Evaluation ... 32

6.2 – User Evaluation ... 33

Chapter 7 – Reflection, Future Work, and Conclusion 36

7.1 – Project Goals ... 36

7.2 – Possible future work .. 37

7.2.1 – Short-term objectives ... 37

7.2.2 – Long-term objectives.. 39

7.3 – Project Management .. 40

7.4 – Personal Achievements ... 41

7.5 – Overall Conclusions .. 41

References ... 43

Appendices ... 49

7.3 – Appendix 1 - Examples of Nutrition Labels Around the World . 49

7.4 – Appendix 2 - Low Fidelity Mockups ... 53

7.5 – Appendix 3 – Other Design Artefacts ... 58

1

Chapter 1

Introduction

This project consisted of developing a simple assistive application, having complete
control over the scope, design, development and evaluation of the app. As such, this project
was open-ended in nature. After an initial conception stage, the project took shape as an
Android app that would help improve the accessibility of nutrition labels.

Nutrition labels contain very important information, particularly for people with dietary
restrictions. However, many have not been designed with accessibility in mind, or fail at
delivering information in a format accessible for everyone. Indeed, nutrition labels are
usually in a format that can be quite hard to read for many people. For instance, people with
dyslexia might have trouble reading the small, cramped text, whereas the purely textual
format can make it impossible for people with visual impairments to understand the
information presented.

The aim of this project was therefore to create an application that could scan a label,
process it, and extract the relevant nutrition information, presenting it in a more accessible
manner. The application would be designed, developed, and evaluated using industry-wide
user experience techniques. Accessibility would be the main focus of the application,
designed to be compatible with a variety of assistive services.

This report will explore the background for this application’s motivations more in detail,
the conception and design of the app, the code development, the results, the evaluation of
the final product, and a reflection on work and the outcome of the project.

2

Chapter 2

Background

Nutrition labels provide very important information about the foods we consume, but there
is no universal standard that all countries follow. There is no universally accepted standard
for nutrition labels, even when accounting for language and culture differences.
Consequently, all countries have nutrition labels that differ from each other, as each one
implements a different solution to the problem of how to best convey the information.
Figure 1 illustrates this point clearly, with more examples being shown in Annex 1.
Furthermore, warning consumers about high contents of certain nutrients also varies by
region. Some countries have adopted a front of packaging ‘traffic light system’, like the UK
(Department of Health, 2016), while others use prominent labels warning of high contents
of nutrients like sugar, like is the case in Chile (Ministerio de Salud, 2018, p.15). On the other
hand, others do not warn consumers of high levels of nutrients in labels, like the United
States (Food and Drug Administration, 2016). These differences reveal that an optimal
solution has not yet been found for nutritional labels.

Furthermore, many regulations allow very cramped text in nutrition labels, making
reading difficult, and creating inaccessible labels. For example, in Figure 2 displays a label
with all its information in a single paragraph, with no structure or visual arrangement. This
can make it difficult to find a nutrient we want information on, as we would have to scan
the whole label to locate it. As the text is also restricted to a very small space, smaller values
of inter-letter spacing are required to make the text fit, which can hinder word recognition
for people with dyslexia (Perea et al., 2012). Furthermore, presenting the information in a
purely textual manner can make comprehension of numerical values difficult when
compared to using more visual information, like tables (Tufte, 1985). Some standards allow
presenting the nutritional information in an inaccessible manner, creating a barrier of
access for many people.

3

Figure 1: Clockwise from top left: FDA nutrition facts label, UK nutrition label using a
traffic light system, Japanese standard nutrition label (Source: Consumer Affairs Agency,
2020), United Arab Emirates nutrition label for imported products (Source: United States

Department of Agriculture, 2019)

Figure 2: French nutritional label where the nutritional information is not distinct from
the rest of the information, and where line wrapping breaks up the names of the

nutrients, like ‘acides gras saturés’

4

Moreover, even the more accessible nutritional labels prove to have accessibility problems
for people with visual or reading impairments. Indeed, nutritional labels only use printed,
visual information, which can exclude people with visual impairments. Indeed, concerns
have been raised that nutrition labels are completely inaccessible for blind people (Southey,
2020). As around 285 million people in the world are visually impaired, from which 39
million are blind (World Health Organization, 2010), current standards exclude a large part
or the global population from essential information. Even when the information is
presented in a visually accessible manner, nutrition labels remain inaccessible for many
people, requiring change.

In this section, it has been explained how there is no worldwide standard for nutrition
labels, and how current ones remain inaccessible. This has created a gap in access where
nutrition labels do not effectively provide the information they are supposed to for many
people. The following chapters address how I attempted to fix this issue with my project by
designing, developing, and evaluating an Android assistive application to scan nutrition
labels and presenting them in a more accessible manner.

5

Chapter 3

Conception and Design

Due to the nature of this project, I could not start coding immediately. Instead, attention
had to be paid at the conception and design of the app itself, including gathering and
analysing user requirements, creating mockups and prototypes, and planning how it would
work on a technical level.

3.1 Conception

3.1.1 Finding an idea

This project’s only initial indication was to make a simple assistive piece of software, so
coming up with a worthwhile, useful, and original idea was the first step of the process.
While other third year projects available are much narrower in scope, this proposal offers
much more freedom to the student in defining the project’s ambitions and goals. However,
this freedom also meant that I needed a clear idea of what I wanted to focus on, as a not
well-defined enough concept would harm long-term development. As such, I started this
project with multiple brainstorming sessions to determine what shape it should take.

The first ideas I came up with were all centred around improving the accessibility of digital
products and devices. However, coming up with an original way to do so was proving to be
a challenge. Many digital products still do not assess accessibility properly in their design
or development phase. Indeed, Yan and Ramachandran (2019) found that only 1.7% out of
479 popular Android applications presented no accessibility issues. Accessibility issues
persist in a variety of other digital products too, like online libraries (Spina, 2019), video
games (Yuan et al., 2011), and MOOCs (Iniesto et al., 2016). Therefore, my first concepts
attempted to tackle some of these issues. Some examples included making a browser
extension that would allow users to change a website’s layout to make it more accessible
or advanced screen tinters to reduce eye strain. Despite having multiple ideas, there were
already existing products that accomplished the same functions. Although I could have
developed a complete and useful product based on these ideas, I wanted my project to be
unique and not a simple imitation of other programs. Therefore, I shifted my focus away
from improving the ease of use of software.

6

Instead of trying to improve the accessibility of technology, I changed my approach to
target ways physical products and real-life situations could be made more accessible
through technology. This change was inspired by my HCI course and general knowledge.
Technology can help make the real world more accessible for people with disabilities and
impairments. For instance, Google’s Lookout app helps people with blindness explore the
world around them by recognising objects using computer vision (Clary, 2019). I took
inspiration from this example to try and find accessibility and access issues in real life that
technology could provide a novel solution for. This approach of tackling real world
problems without already existing, complete, and adequate solutions permitted me to
create a project that was fully unique and original.

I finally settled on building an app that improves the accessibility of nutritional labels for
people with dyslexia and visual impairments by scanning them and presenting them in a
more accessible manner. Nutritional labels include important information about the food
we eat every day, like calorie count, sugar quantity or proteins. Knowing these values can
be crucial for a wide variety of people, including those on a diet, athletes, or people with
diabetes. However, many nutritional labels have not been designed with accessibility in
mind, as people with impairments like low vision and astigmatism may struggle reading
the usually small and cramped text. If text legibility were not an issue, people with dyslexia
could still have difficulties understanding purely textual information. As computer vision
and text recognition has become feasible even on low-power devices, I decided to attempt
to solve this issue through an app that scanned the label itself and presented the
information present in an accessible style.

3.1.2 Improving previous solutions

There are many existing applications that can display a product’s nutritional information,
but their underlying design do not make them apt for making products accessible. For
instance, many of these apps rely on scanning the barcodes to identify a product, and then
access a database where the nutritional information has been stored beforehand. One of the
most popular Android apps for calorie counting, MyFitnessPal (2021), uses this method to
provide nutritional information to its users. However, for products that have not been
logged by any user, a common issue in countries where the app is not as popular as in the
United States or the UK, the app will not be able to display any nutritional information.
Instead, it will ask the user to input the information themselves. Furthermore, as this
information is mainly user-obtained, input errors may make the application less reliable.
As such, this barcode- and database-oriented method does not work if we want to make all
nutritional labels accessible.

Furthermore, accessing a database requires internet access, which creates another barrier
to access. While 97% of the population in developed countries are covered by a fast speed

7

4G mobile network, only 40.5% of the population in the least developed countries enjoy the
same level of coverage, with only 19% using the Internet due to unaffordability
(International Telecommunication Union, 2020, pp. 4, 13). Furthermore, internet in
developing regions is constrained by ‘slow speed, low computational power, [and] reduced
bandwidth’, creating ‘digital exclusion’ (Harper, 2020). Therefore, requiring online access
would create a barrier to usability for a large part of the world’s population, which is to be
avoided when developing an app that is focused on improving accessibility of food products.

To avoid these issues and improve the accessibility and effectiveness of current nutrition
apps, I decided to have the app perform the nutritional label scan on-device. This ensured
that the nutritional information was as accurate as possible, instead of relying on user-
provided information. Doing this scanning offline also guaranteed that users in areas with
no internet access could use the app and access the same information as all other users.
With this design decision, a better and more efficient user experience could be built when
compared to previous solutions.

3.2 User Experience Design

When building an app meant to improve accessibility, good user experience design is key.
Indeed, following key principles of user experience will result in an app that is user-
focused, effective, and accessible. However, great user experience cannot be retroactively
fitted once the core development has finished, but it must be a consideration in the design
process from the very start, and throughout the entire development. As such, special
attention was given to the user experience design.

3.2.1 Gathering user requirements

Gathering user requirements was the first step of the design process, as is usual for projects
using user-centred design. Indeed, building an assistive app requires understanding
functional and non-functional user needs. Therefore, before developing an app, it is
fundamental to understand what the app is trying to accomplish beyond a technical level
(Rettig, 1992). This includes not only functional requirements, but also understanding who
the target audience is, how the visual design should look like, how the app needs to behave,
and how the interaction pathway should be like (Harper, 2020). Gathering this information
allows to determine what elements and features will have a significant impact on
improving the user experience and the usefulness of the product, and which ones can be
set aside as they would not have a significant enough benefit compared to development
costs. As such, gathering user requirements was the first step in the design phase of this
product, allowing to determine what the next steps in development were, and how the final
app should look and behave like.

8

Due to the COVID-19 pandemic, gathering user requirements was more difficult than in a
normal year, as getting access to users was impossible. Indeed, many of the methods
typically used in user experience design were impossible. Techniques like task analysis and
participant observation are considered among the most effective for requirements
elicitation (Harper, 2020; Norman, 2013, pp.221-224). Indeed, these allow a UX designer to
better understand the user, their objectives, and the problems of the solution they
currently use. In this project, participant observation would have been used extensively.
However, this technique requires access to users. The COVID-19 pandemic made direct
access to users impossible, so I could not use this observation technique. As such, gathering
user requirements proved to be more difficult due to the lack of users caused by the
pandemic.

Due to the lack of users, requirements were gathered by using both previously written
formal and informal sources on how to design for people with dyslexia, but also about
finding out what were the most common problems when it came to nutrition label
accessibility. Indeed, this data reuse can be an effective method of requirement elicitation
if there is a lack of users. By mixing both academic and other formal sources, like Nielsen
(1996) and Graham et al. (2012), and more informal sources such as Guest (2016), Bjorn the
UX Dog (2020), and Van den Rul (2019), this user requirements elicitation took into
consideration empirical research and the subjectivity of user experience. While scientific
journal articles and industry reports are extremely useful sources of information, direct
user testimonials allow a UX designer to understand the personal feelings and thoughts a
user has when dealing with a given problem. As UX uses both quantitative and qualitative
approaches, it is therefore important to use both formal and informal sources.
Consequently, previously written informal and formal sources were used, allowing to
gather user requirements despite lacking a direct access to interview or observe users.

Some of the key requirements that were identified included using accessible fonts,
including customisation options to respond to individual accessibility needs, and include a
graphical representation of the nutritional information. Indeed, all of these were necessary
elements to ensure that the application was as useable, useful, and accessible as required.
For example, including font customisation was a planned feature as there is no single font
preferred by users with dyslexia, as will be described further in section 3.3.2. In the case of
including graphical representations of the nutritional information, some dyslexic users
found that they were able to better understand information if it was also presented using
charts. After reading and collating multiple sources, user requirements were determined
to decide what features were significantly important and needed to be implemented.

9

3.2.2 Modelling user requirements

User requirements modelling is the next key step, allowing to gain a deeper understanding
of the system while confirming that the user requirements we found are appropriate. This
stage consists of analysing the previously gathered requirements and designing a system
that responds to these requirements. While there are many different, parallel methods for
modelling requirements, this project focused on ones that did not require users. Indeed,
many modelling methods fully integrate the user, allowing them to make contributions in
this stage too. However, due to the lack of users, as was explained earlier, the choice of
which methods could be used was limited. For instance, using movable post-it notes to
create storyboards is an effective method to encourage users to contribute to refining the
system, as it is an unthreatening, familiar system to lay down thoughts (Harper, 2020).
However, it becomes limited when done with no users or without physical access to a
whiteboard, owing to the limited interaction in online systems. Consequently, as with
requirements elicitation, requirements modelling was done using methods that did not
require users.

Personas and scenarios were created to better imagine and understand the people using
the system, and how they would use it. Personas are detailed descriptions of fictional
persons relevant to a system. These are especially useful when ‘constraints (…) exclude
participatory design methods’ (Matthews et al., 2012), as is the case for this project. On the
other hand, scenarios are descriptions of a user using the system to accomplish one or
multiple goals. Scenarios also include user’s expectations of how a system will behave and
how the interactions take place. These two user experience tools are useful not only in the
design phase, but also in the testing phase, when validating if the built product fulfils the
requirements. Therefore, creating personas and scenarios was a key step in modelling user
requirements, as it helped create a better picture on what users looked like and how
interactions with the app would take place.

Finally, using the MoSCoW system allowed me to sort and prioritise which features to focus
on first based on their importance, allowing development to be organised and progress
smoothly. Figure 3 shows how user requirements in this project were set into different
categories. Those in the ‘MUST’ category were considered critical, meaning that they had
to be developed first with the highest level of polish possible. On the other hand, those
ranked at “WOULD/WON’T” were not deemed feasible to be completed in the timeframe of
this project, either because they would not bring a significant improvement to the product,
or because the time required to develop them would be better employed to implement and
polish other, more important features. Organising and classifying user requirements into
different categories based on their urgency and importance was the final step of the
modelling user requirements stage, leading the way to start prototyping the system.

10

Figure 3: User requirements organised using MoSCoW analysis

The subsection that follows describes the final, and arguably most important, step of
requirements modelling, consisting of building both low- and high-fidelity mockups and
prototypes.

3.2.3 Mockups and prototyping

Mockups and prototypes are useful tools for user experience practitioners, allowing to get
both qualitative data on the user experience of a product in its early stages. Indeed, creating
and evaluating interactive prototypes allows to explore different ideas quickly (Buchenau
and Suri, 2000) and obtain valuable qualitative data on the experience (Arhippainen and
Tähti, 2003). Furthermore, high fidelity prototypes can have very high ecological validity.
Indeed, the user can interact with this type of prototype on device, closely matching real
world conditions. Therefore, building mockups and prototypes was a very important phase
in the design stage of this project.

Several low fidelity mockups were made to quickly and iteratively explore different layout
ideas. Low fidelity mockups, done using pen and paper, allow to quickly sketch out and

11

compare layouts for one same screen. Compared to more high fidelity mockups, low fidelity
mockups also would have allowed for users to input their ideas on how the layout should
look like, but this did not take place due to the COVID-19 pandemic, as explained in the
previous sections. Nonetheless, this type of mockups remained a very useful tool to
investigate different solutions, as seen in Figure 4. In this case, being able to quickly create
variations on the same screen permitted to analyse how element hierarchy was affected by
the design, as well as finding flaws in the design. This saved time before building the more
time consuming interactable prototypes, allowing to find the optimal solution faster.
Further examples of these low fidelity mockups can be found in Appendix 2. The use of low
fidelity mockups allowed to focus faster on what the final design would look like by finding
the best visual solutions to the user requirements.

Figure 4: Low fidelity mockups of the detailed scan screen, comparing different solutions
to element hierarchy and organisation

Finally, a high-fidelity prototype that could be run on device was created to simulate how
physical interactions with the app would take place. Indeed, as this application would
involve physically moving the phone around to scan a label, there is an additional degree
of interaction that can only be simulated in a physical device. Because of this, building an
interactive mobile prototype was necessary. Using Adobe XD (Adobe, 2021a), I built a
prototype, partly shown in Figure 5, that implemented the features characterised as a

12

‘MUST’ previously. This prototype also implements one ‘COULD’ feature, namely keeping
track of foods previously scanned, as the visual layout would be unbalanced without its icon
in the bottom navigation bar. This prototype was then tested on the mobile version of
Adobe XD (Adobe, 2021b), ensuring that the app would be easy to use on a mobile device.
Creating a high-fidelity prototype helped make sure that the user interface and user
experience design fully responded to the user requirements before starting code
development.

Figure 5: Examples of the initial Adobe XD prototype screens

3.3 User Interface Design

The user interface affects user experience, and vice versa. User interface elements, like
typography, colours, or branding will affect the user’s emotion and inner state, as well as
the app’s usability. An unappealing, bland interface will decrease the perceived quality of
the app, resulting in a worse overall experience. An unreadable font will make the app
difficult to use. Certain interactions will require specific interface elements. Although
related to user experience design, user interface design is nonetheless distinct, as the latter
focuses almost exclusively on the visual aspects described above, while the former pays
attention to the workflow and overall experience when using a system. Therefore, proper

13

user interface design was key in ensuring that the user experience was as polished and
high-quality as possible.

3.3.1 Design language

As this project consisted of developing an app exclusively for Android, I decided to employ
the Material design system (Google, 2021a). Material sets out a series of guidelines
concerning components, layout, colour, sound, and type. While it would have been possible
to design the user interface without following any already existing guidelines, Material is
a robust and mature design language created with lots of research by a very established
company. Having no previous experience doing interface design, following Material
guidelines allowed to create a polished visual style faster than otherwise. Furthermore,
using Material ensures that the application is visually consistent with other Android
applications and with the overall Android system. This has a positive influence in helping
users understand how to use the application, as it looks and feels similar to other
applications they’re familiar with. Following guidelines of the Material design system
allowed to create a polished user interface that helped make the app feel familiar and
effective for users.

Figure 6: ‘+ SCAN’ FAB in the first prototype (left) and the final application (right) not
following Material guidelines at the time of development

14

Nonetheless, some user interface elements did not strictly follow Material guidelines at the
time of development, as they were not fully adequate for the requirements of this
application. Indeed, both in the interactive prototype and the final product, the placement
of the ‘Scan’ floating action button (FAB) did not follow Material guidelines at the time of
design and development. While Material guidelines state that FABs should not be placed
outside of a bottom app bar, the first prototype did so, as can be seen in Figure 6. This was
done like this as travelling to the ‘new scan’ screen was not simply travelling to a different
part of the application, but also part of creating a new scan that could potentially be a
persistent object if the scanning diary feature were implemented. Furthermore, at the time
of development guidelines stated to not mix bottom navigation bars and floating action
buttons, as they could confuse the user, but these recommendations have changed at the
time of writing. Indeed, in a study they conducted ‘participants liked the bottom navigation
bar with an embedded, centered FAB because of the aesthetic and ergonomic benefits’
(Google, 2021b), so the previous guidance has been removed. Going to the scanning screen
remained as an embedded FAB within the bottom navigation bar in the final product as it
was part of the navigation system, but also a way of potentially creating persistent objects
if the diary feature was created. At the time of development, certain Material guidelines did
not seem adequate, so I designed the user interface ignoring these. Recent changes in these
guidelines suggest that the decision to do so was appropriate.

3.3.2 An emphasis on typography

Typography was a very important part of the design process, as one of the main objectives
of this app was to render inaccessible nutritional label text accessible for people with
dyslexia. Therefore, using a font that remained legible at even small font sizes was
essential. As with other design requirements, a mix of formal and informal sources were
used to discover which fonts help users with dyslexia, and which fonts to avoid.

Formal sources seem to suggest that sans-serif fonts are the best for screen readability,
while fonts designed specifically for dyslexia like OpenDyslexic do not improve or worsen
readability. For example, Boyarski et al. (1998) state that while Verdana was perceived as
better than serif fonts on a computer screen, other factors like ‘type size, line length, and
line spacing’ will also impact readability regardless of font. Rello and Baeza-Yates (2013)
agree, stating that ‘sans serif’ font types ‘increased significantly the reading performance’
for people with dyslexia, recommending fonts like Helvetica, Arial, or Verdana, while ‘italic
fonts’ decreased readability. They also suggest that OpenDyslexic ‘did not lead to a faster
reading’, with participants preferring Verdana or Helvetica over this font specifically
designed for dyslexia. Finally, Rello (2015) remarks that font size should be ‘larger than the
current recommendations’ in WACG 2.0. Because of these studies, I gravitated towards
sans-serif fonts, while keeping in mind how other factors, like font size, would impact
readability and accessibility.

15

Informal sources generally agree with the more formal studies but also reveal how
subjectivity plays an important role in font preference, further suggesting that
customisability could be an important feature. Indeed, font readability seems to have a
personal dimension, depending on each user’s preferences. For example, multiple forum
threads about dyslexia show clashing opinions on the OpenDyslexic font (Resorization,
2019; mano1990, 2018; xueli, 2015), as some users stated that it helped them whereas
others argued that it made reading more difficult. While most users prefer sans serif fonts,
Veroniiiica (2018) advises that cursive fonts like ‘Lavanderia’ can be appropriate at times,
and Chen (2019) states that one should use a font that mixes serif and sans serif
characteristics. These sources are a good illustration of how subjective font readability is,
with each person having different personal preferences, despite seeming to be a consensus
in the more formal sources. As such, font customisability could help significantly enhance
the application’s accessibility, responding to individual preferences.

The conflict between aesthetics and accessibility added to the challenge of finding an
adequate font. Aesthetics play an important part in user experience, affecting the perceived
quality of the product (Harper, 2020). Because of this, some fonts deemed accessible for
people with dyslexia would not be appropriate for this project, as their aesthetics would
hamper the quality of the application. For example, both Arial and Verdana are very
prevalent on many systems, and it is a widely held view that they are both bland fonts
(Rothstein, 2009). Due to this familiarity and little aesthetic value, using these fonts in the
application would have created a product that feels bland and generic, diminishing the
quality of the user experience. As such, the font used would have to not only be fully
accessible for people with dyslexia, but also be visually pleasing to enhance further the user
experience.

Figure 7: Accessibility issues with P22 Underground. The letter ‘q’ is a mirrored version of
‘p’, and so are ‘d’ and ‘b’, which can make words difficult to read when both letters are

present in a word. The number ‘1’ is also very similar to the capital letter ‘I’, which could
cause problems when reading the value of a nutrient and its unit of measurement

The first choice of font was P22 Underground, but due to accessibility issues, licensing
problems, and intentions to improve visual hierarchy, I switched to using both DM Sans
and Noto Sans CJK as the primary fonts. I had already used P22 Underground in other
projects, but upon testing its accessibility and utility for this application, some of its
characters were not fully distinct from each other, as can be seen in Figure 7. Furthermore,
licensing issues to use the font in Android applications prompted the switch to other fonts.
After exploring multiple options, the DM Sans font was selected for headings and
subheadings, while the Noto Sans CJK font was chosen for body text. While the DM Sans

16

suffers from similar problems to P22 Underground, as the number ‘1’ is very similar to the
capital letter ‘I’, this did not pose any issues, as no numbers would appear next to letters
in headings or subheadings. The Noto Sans font family is a font developed by Google, with
a wide adoption in Android, helping make the app feel more familiar to users. The Noto
Sans CJK font, which covers East-Asian languages, was chosen over the regular Noto Sans
font, as Latin characters in the former were less geometric, shown in Figure 8, helping
character recognition and potentially improving readability. Furthermore, using different,
distinct fonts with different weights helps create a visual hierarchy that follows the
components hierarchy. As Figure 9 illustrates, DM Sans is used for the main dialog whereas
Noto Sans CJK is used for the body text, which is less important and acts as helper text. The
bigger weight used for the title also helps drive attention to it, helping the user understand
faster the current state. After initially selecting P22 Underground, licensing and
accessibility issues prompted the switch to the accessible DM Sans and Noto Sans CJK fonts.

270 mcg, 15 ml / 270 mcg, 15 ml

Doxxing / Doxxing

Figure 8: Comparison between Noto Sans CJK (left) and default Noto Sans (right). Noto
Sans CJK is more humanist and less geometric than the default Noto Sans font. More

geometric fonts can result in more difficult differentiation between letters. Noto Sans CJK
also has a bigger x-height (height of a letter), which makes it easier to read at small font

sizes

17

Figure 9: Example of DM Sans and Noto Sans CJK being used create a visual hierarchy and
help drive attention

3.3.3 Ensuring accessibility

The previously mentioned high-fidelity prototype also served to validate the UI elements
for their accessibility, including colour contrast and colour blindness checks. Indeed, the
interactive prototype was the first time that colour was introduced into the design. Using a
variety of tools ensured that the design was fully accessible for a maximum number of
users. For instance, the WebAim colour contrast checker (WebAIM, 2021) was used in
conjunction with the Stark plugin (Stark Lab, 2021) to ensure that text contrast conformed
to WCAG AA standards. The Adobe colour picking tool (Adobe, 2021c) provided a way to
check that colours used for different UI elements were colour-blind safe. During the user
interface design process, a variety of tools were used to ensure that all elements remained
accessible colour wise.

18

Three different themes were designed after identifying that having different theme options
was an important user requirement, as it would be easier for an individual user to
customise the application to their liking. The themes included the default light theme, a
dark theme, and a pale theme. Different users will have different preferences on how they
want their phone to look at based on functional requirements. For example, dark theme has
gained popularity in these last years for many different reasons. For some users it may
reduce eye strain, and while some users prefer it simply for aesthetic value, dark mode may
also help people with low vision (Budiu, 2020). However, Budiu (2020) also notes that dark
theme presents certain issues of its own, namely causing halation around letters for people
with astigmatism, making text harder to read. Furthermore, some people might find light
theme straining in the eyes, but do not wish to use a dark theme due to the aforementioned
problems, so a third, pale theme was designed, shown in Figure X. This theme uses milder
colours to reduce eye strain while still maintaining the feel and accessibility of a light
theme. All three themes were verified to be colour contrast safe and colour-blind friendly.
Light theme was chosen to be the default theme, with the dark and pale themes being
selectable options in settings. Designing and creating different themes was a very
important phase of ensuring that the user interface remained as accessible as possible for
the widest set of users.

3.4 Iterative Design

Iterative design was originally planned to take place by creating multiple prototypes
throughout the year, but due to time constraints and practicality, the iterative design
process was scaled down to a more simplified version. Iterative design is a staple of user
experience design (Harper, 2020), usually done in 4 main, cyclic phases: Understanding
users, Design, Prototyping, and Evaluating (Petrie and Bevan, 2009). Therefore, the
creation of multiple prototypes was planned to take place throughout the development
process to conduct iterative design. However, creating a prototype in Adobe XD took an
almost equal amount of time compared to creating the layout directly in code.
Consequently, these mid-stage prototypes were not created, instead opting for a faster
version of the iterative design cycle without the prototyping stage. This is exemplified by
the development and design of the detailed scan screen immediately after scanning a label.
Figures 10 and 11 display how this screen changed from the first prototype to the final
release version, with the design changing progressively directly in code without building
any prototypes. While complete iterative design was planned to take place, it was cut down
and shortened due to time constraints.

19

Figure 10: Original Adobe XD prototype for the nutrient display screen

Figure 11: From left to right: mid-project design revision and final design for the nutrient
display screen, both built directly in code

20

Nonetheless, despite the lack of a complete iterative design process, there were some small
design stages during development, notably for the pie chart feature. As features were
progressively implemented as lower priority ones were completed, not all the design phase
was completed before code development started. Indeed, some features, like the pie charts
to represent the daily recommended value percentage, were designed mid-development.
Figure 12 shows how creating low fidelity mockups helped discover that using bar graphs
to visually represent the nutrition information could lead to grouping, a process where
different elements are grouped together perceptually due to shared characteristics
(Goldstein, 2016). In this case, the bars seemed to be in competition to each other due to
proximity and similarity. On the other hand, representing the daily recommended values
as pie charts did not seem to create grouping from visual inspection. Small design phases
during the development phase helped save time when developing new features.

Figure 12: Low fidelity mockups for the pie charts feature done mid-development

21

This section has explored how the design of the application took place, including iterative
design. Further examples of artifacts created during the design period can be seen in Annex
3. In the chapter that follows, this report describes how development took place, and how
the designs and prototypes were made into working code.

22

Chapter 4

Development

After an initial design and planning stage, the development phase started. This
development phase can be separated in two main parallel parts, the logic section, including
the creation of the label scanning algorithm, and the front-end development,
encompassing both the implementation of UI and UX elements. Using a variety of tools and
management techniques, work was organised efficiently to complete as many planned
features as possible.

4.1 Management of Work

The work management style was heavily influenced by the development methodology I
based my working on, Cowboy coding, which I integrated aspects of after originally
planning to use Agile methods. Indeed, Agile methods were originally planned to be used,
as they are considered appropriate for UX work (Harper, 2020; Kieffer et al., 2017; Peres et
al., 2014), mainly due to their shared cyclical and iterative nature. As such, several small
incremental releases were planned, between which UX and UI revisions would be done.
However, as this was a one-person experimental project, having several small releases and
UX revisions could be a distraction. Indeed, even if the app features increased, the changes
in UX would not be big enough to justify doing a complete overhaul of the experience.
Consequently, concepts of Cowboy coding were introduced into the working process. This
methodology has been lauded as “useful for experimental (…) work because the coding
team is often one person”, allowing the developer to “rapidly change their algorithms and
processes”. (Harper, 2020). Most programming and development was done on
technologies that I was unfamiliar with, requiring experimentation, trial and error, and
quickly adapting the code to the most optimal solution. Therefore, integrating aspects of
Cowboy coding allowed to manage time more efficiently than only Agile methods.

A variety of tools and techniques were used to keep track of deadlines and tasks to complete,
aiding in organising my time and finishing the project. After having done requirements
elicitation, the MoSCoW prioritization technique was employed to determine which
features were the most important ones to implement, and which ones could be relegated
for later development. GitLab’s (GitLab, 2021) integrated issues and milestones tracker was
also used to record bugs and tasks that needed to be taken care of. Using the labels feature
allowed to group the tasks into the different MoSCoW prioritization stages, helping to
faster determine which things should be worked on at any given stage. The use of these

23

tools and techniques ensured that it was always clear what to work on and what needed to
be done, even after breaks in development due to exams, for example.

4.2 Platforms

4.2.1 Deployment platform

The application was developed exclusively for the Android platform (Google, 2021c), as my
familiarity using it, tools available, and a focus on a single platform would help develop a
better product. Indeed, despite never having programmed for Android, I was familiar with
the standards for user interfaces and experiences in that platform, as all my phones had
Android as their operative system. For this reason, releasing for both iOS and Android
would have proved to be a challenge, as more resources would have to be spent resources
ensuring that the experience in both platforms was equivalent. In turn, this would have
made less time available for development, ultimately deteriorating the quality of the
product. Furthermore, Android integrates several useful APIs, such as CameraX or ML Kit,
that simplify app development. Therefore, the application was deployed only on Android
to ensure that the user experience was as polished as possible.

However, due to my inexperience programming for Android, a lot of development time was
spent learning about fundamental Android development concepts. Indeed, my only
previous experience developing for mobile was a simple augmented reality app using the
Unity platform. As such, I had never developed a full-fledged, Android-first application,
nor had I learned about Android development in any of my university courses. Therefore,
before I started coding, I needed to learn important concepts like services, resources,
intents, and activities, but also how layouts and themes were programmed to ensure
complete screen compatibility. Thus, the choice of deployment platform required me to
rapidly learn about important and fundamental Android development concepts.

4.2.2 Development environment

Android Studio (Google, 2021d) was chosen as the development IDE due to its native and
dedicated support for Android mobile development, as well as for being the official and
recommended IDE for Android. While there are many IDEs that support Android
development, including one which I am familiar with, Eclipse, development was done
exclusively with the official Android IDE developed by Google. This choice would ensure
complete Android compatibility and faster development with the most up-to-date code
recommendations available. Furthermore, features like its layout visualiser and emulator
helped me develop the UI more quickly, even if the application still needed to be run

24

natively on device to ensure that the UI displayed correctly. Due to being officially
supported by Google, Android Studio was used as the IDE for this project.

4.3 Programming Language

Android Studio supports writing applications in Kotlin, Java, and C++, but due to my
previous experience in university, programming was started using Java. Indeed, I learned
Java during the first year Object Oriented Programming with Java courses, and I became
more comfortable using it during the second year Software Engineering course units.
Because of this previous experience, Java was initially chosen as the programming
language for this project, avoiding having to learn another programming language which
would reduce the available development time.

However, Google’s switch to Kotlin as a preferred language for Android has caused a lack
of recent documentation in Java, prompting to switch development to Kotlin. Indeed,
Google announced in 2019 that Kotlin was preferred over Java for Android development
(Lardinois, 2019). This, from personal experience, made documentation in Java more
difficult to find. For instance, the official CameraX starter code lab (Google, 2021e) is only
available in Kotlin. Therefore, developed changed direction to use Kotlin to avoid problems
finding documentation, despite having no previous experience using the language.
Following Google’s recommendations, Kotlin was used for the entire project, as finding
official Android sometimes non-existent documentation for Java was much more difficult,
adding unnecessary complexity and challenges to the project.

4.4 ML Kit

The main feature of the application, scanning nutritional labels and accurately extracting
the information from them, was reliant on optical character recognition by design. I settled
on using ML Kit’s text recognition API (Google, 2021f), as it allowed to fulfil the design
requirement of having the app fully run on device and not rely on cloud services. Indeed,
ML Kit text recognition component works fully offline, allowing users with limited access
to internet services to also use the app. Furthermore, as this API is also developed by Google,
it ensures that performance is as fast as possible, enhancing the app’s quality and the final
user’s experience. Using ML Kit allowed to accomplish the offline requirement for the app
and make certain that performance was as smooth as possible.

25

Figure 13: FDA nutrition label (left) and part output of ML Kit text recognition (right).
Each line in the recognized text is recognised as an individual paragraph, which contains

one line, which contains one or more words.

ML Kit’s text recognition API organises a recognised text into separate paragraphs, lines,
and words, which allowed to correctly extract the nutritional information from the image.
After recognising the text, ML Kit creates a Text object, containing TextBlock, Line, and
Element objects. Figure 13 illustrates how ML Kit separates the information of a standard
FDA nutritional label. A nutrient’s name and value are usually recognised within the same
line. It is important to note that the calorie information is an exception to this rule, as its
value gets recognised either in the line preceding or succeeding the line containing
‘Calories’. This separation allowed to check if any lines contained a keyword corresponding
to nutritional information, and if this keyword had an associated value. Extracting the
nutritional information from the labels was possible thanks to ML Kit’s organisation of the
recognised text into distinct paragraphs, lines, and single words.

However, many real-life US nutritional labels do not follow the FDA standard perfectly, so
manual testing was required to ensure that the code would work on the widest possible
number of labels. For instance, while it was previously mentioned that the ‘Calories’ value
is usually detected in a separate line, some thinner labels, shown in Figure 14, cause the
API to recognise the value in the same line. Another example is that of labels containing
multiple values and percentages on the same line, which can cause confusion as to which
value should be read, also shown in Figure 14. Consequently, the algorithm had to be fine-

26

tuned to also work on these edge cases. Labels that didn’t follow the FDA standard perfectly
made extracting the relevant information more difficult, requiring incremented testing
and refinement of the code.

Figure 14: From left to right: label where the ‘Calories’ value is read in the same line as the
nutrient name, label where multiple values and percentages are displayed

Furthermore, ML Kit’s text recognition API is not perfect, so manually testing the
algorithm with edge cases allowed me to build a more robust product. Indeed, as the optical
character recognition runs fully offline, it uses less computational power, being more
prone to error than a cloud-based system. A notable example of this is how ML Kit
sometimes recognises two separate values as being part of one individual bigger value, as
it does not recognise the space separating the two values. Another important example,
shown in Figure 15, is how due to the similarity between the lower case ‘g’ and the digit ‘9’
in an FDA label, ML Kit will sometimes recognise the former as the latter, resulting in an
erroneous reading. These issues could not be fully fixed as it was the text recognition API
that failed and not my produced code, but they can both be mitigated by checking that the
extracted value is not too large, truncating the value to the first digits if required, while
also verifying if the line were the value is contained a unit. If not, this meant that the unit
had been interpreted as a number and had to be removed from the recognised value. As ML

27

Kit can error when reading the labels due to cramped text, additional checks were included
to ensure that the parsed values were correct and coherent.

Figure 15: Clockwise from top left: detail of nutrition label, ML Kit incorrectly reading the
‘Dietary Fiber’ value as ‘29’ instead of ‘2g’, value correctly displaying in the application

4.5 User Interface

4.5.1 Building layouts

The core of UI programming was done through XML, one of the main ways to code layouts
and interfaces in Android. Indeed, each Activity, or app screen, has an associated XML
layout specifying the elements that should be present when running said activity, including
buttons, text fields, and app bars. Despite never having written a layout in XML before, I
was able to quickly learn how to do so thanks to my skills creating CSS layouts for websites.
Indeed, both systems share some common concepts. For instance, using ConstraintLayout
in Android to define an element’s positioning relative to another element is like using the
position attribute in CSS. Furthermore, as the app needed to be as versatile as possible, I
built separate vertical and horizontal layouts, as seen in Figures 16 and 17, creating a more
pleasant and accessible user experience. Using XML, layouts were coded that adapted to
screens of all forms and sizes, ensuring a consistent and efficient user experience.

Figure 16: Landscape layout of the main scanning screen, with the buttons being shifted to
an easier to reach position

28

Figure 17: Vertical layout of the main scanning screen

4.5.2 Enhancing feedback

Nonetheless, using solely XML was limiting, as it is impossible to define some
indispensable elements necessary for fluid interaction and feedback. Indeed, Norman (2013,
p.72) details that feedback is necessary in any interactive system, and that good feedback
is present if, ‘after an action has been executed, it is easy to determine the new state’. For
example, in early builds of the app, the camera preview did not freeze or stop after pressing
the camera button, giving the impression that the button press had no effect. Using
additional Kotlin code on top of the XML code, I the camera preview froze after pressing
the camera button. This way, the user has the impression that the app is analysing the
current photo shown frozen on screen. This feedback is further enhanced by system dialogs,
also controlled with Kotlin code. Moreover, so that the user gets information in both a
visual and auditory manner, sound feedback was added using earcons, long recognised for
being an effective method to improve accessibility and information communication
(Brewster et al., 1993). Using additional Kotlin code on top of the XML layout code, feedback
was enhanced, providing a more responsive user experience following industry-wide
guidelines.

29

4.5.3 Customisability and accessibility

No two users are the same, and as it is impossible to create a single experience that is
adequate for everyone, multiple customisability options were implemented to build a
flexible and malleable app that could adapt to the user’s preferences. User experience is
subjective by nature, as it is dependent on the user’s inner state, including their sense of
aesthetics, perception, and cognition. For example, as described on Chapter 3, changing
the system theme to a dark theme can be beneficial to many users, whereas for some,
including people with astigmatism, dark theme hinders reading. Because of this issue, the
user can choose their preferred theme. Other options included toggling earcons on and off,
and reducing animations, useful for people with vestibular disorders. These options were
implemented using a separate and dedicated preferences activity for easy access and
creating an interaction hierarchy. Indeed, coding a separate activity for customisation
permitted to separate this feature from the others. Granting the ability of choice can greatly
improve the user’s experience, as the app can better adapt to their personal preferences.

Special care was taken to ensure that screen readers worked perfectly with the application,
including creating screen reader labels programmatically. One of the most popular and
useful Android assistive services is TalkBack, a screen reader that also provides spoken
feedback and enhanced interaction for people who are blind or partially sighted. TalkBack
uses special ‘contentDescription’ XML tags, which describe what the purpose of an
element, like a button, is. For text content, TalkBack automatically reads out the text, but
this could cause comprehension issues. For instance, while the service correctly reads out
‘g’ as ‘grams’, it does not understand that ‘mcg’ stands for ‘micrograms’. Moreover,
certain text descriptions appropriate for visual users are not for those that rely on audio
feedback. For example, the application presents the daily value of a nutrient as ‘Calories
DV: 5%’, which can be confusing to hear. Therefore, contentDescription tags are changed
programmatically to a more natural spoken structure, like ‘Calories: 5% of the
recommended daily value’. Other steps were taken to ensure that navigation using
TalkBack was as smooth as possible, such as marking decorative elements not important
for accessibility, making TalkBack ignore these when the user navigates the application,
improving the user experience. Compatibility with Android assistive services was done by
creating XML contentDescription tags, as well as programmatically changing these
depending on the shown content for a more natural experience.

4.6 MPAndroidChart

The implementation of the visual representation through pie charts of the nutrient
information was done with the third-party library MPAndroidChart (Jahoda, 2019),
although its limitations required some workarounds to display the pie charts as desired.
Despite Material design including guidelines on how to design data visualisations, there is

30

no official library to create these on Android, so this project had to use a third-party library,
MPAndroidChart. This library included some useful features, like automatically calculating
percentage values and integrated animations, but additional work was needed to make the
charts visually consistent with the rest of the application. For example, the pie charts are
colour-coded, as seen in Figure 18, but it employs different colours depending on the
chosen theme. Before displaying the charts, the theming value had to be retrieved from
settings, and then colours had to be applied individually depending on the value of the
nutrient. Aside from small workarounds, using MPAndroidChart to implement the pie
charts feature was relatively straightforward and without any major complications.

Figure 18: When the pale theme is selected, the pie charts will also use more muted
colours

31

Chapter 5

Results

The final application successfully makes American FDA nutrition labels more accessible.
Indeed, it can scan a label and successfully extract the relevant nutrition information,
displaying it in a more accessible manner. The application is fully accessible and integrated
with Android’s assistive services, opening nutritional information for many people that
could not easily read printed nutrition labels.

The features in the final version of the application include:

• Be able to scan FDA nutrition labels and extract the relevant information.

• Give the user useful feedback of the application’s state through animations, alert
dialogs, and sound.

• Present the nutritional information using a visual representation with pie charts,
helping the user understand more quickly how much of a nutrient a food product
contains.

• Be able to choose an image from gallery instead of scanning it directly through the
application.

• Be able to receive a shared image and scan it for nutritional information.

• 3 full-fledged UI themes.

• Fully designed for and compatible with Android’s native accessibility services, like
TalkBack or Voice Access, as well as with other third-party screen readers.

• Fully accessible UI following the latest Material guidelines.

• Customisation options to adapt to the user’s personal preferences. These include UI
theming, enabling reduced motion for people with vestibular disorders, toggling
double tap back to avoid accidentally exiting the app, and toggling sound feedback.

32

Chapter 6

Evaluation

The application evaluation was not done in one single stage, but throughout the entire
project development. As it was briefly touched upon on Chapter 3, a version of iterative
design was used in this project, which, despite being simplified, maintained the
‘Evaluation’ stage in the process. As such, evaluation took place multiple times as
development progressed. Doing both software and user continuous evaluation allowed to
create a more polished and robust application.

6.1 Software Evaluation

Software evaluation was performed manually using edge cases, nutrition labels that had
singular and non-standard characteristics that produced errors when scanning them.
Indeed, after the application worked with the most common FDA standard nutrition label,
I bought multiple American products with labels that the application struggled with. As was
mentioned in Chapter 4, some labels had characteristics that made it necessary to refine
the label parsing algorithm, like misinterpreting the ‘g’ symbol standing for grams for the
digit ‘9’. Moreover, one of the labels tested, shown in Figure 19, did not follow the new
standards, applicable from 2020. However, that product was purchased in February 2021,
but the label was nonetheless used to test the application to ensure maximum
compatibility even among non-standard labels. Furthermore, as these were real, physical
products, the software evaluation had a better ecological validity, as the application was
tested using real-life use cases. Testing these labels allowed to catch errors and bugs in the
label scanning algorithm, as well as extending the application’s compatibility to a bigger
number of labels. Software evaluation was done by trying to find use cases that the
application could not properly handle, figure the reason why, and fixing the related issue,
making the application more robust, reliable, and accurate overall.

33

Figure 19: Nutrition label bought in February 2021 still following pre-2016 FDA standards,
which became enforceable in 2020

6.2 User Evaluation

User evaluation was marked by the COVID-19 pandemic and the impossibility of receiving
direct feedback from users, resulting in a limited user evaluation where I was the only
participant. User evaluations are usually done in collaboration with users, using interviews,
surveys, but also walkthrough observations and think-aloud processes, where both
qualitative and quantitative data can be gathered. However, this was impossible to do due
to the pandemic, as has been explained in previous chapters. As a result of this, user
evaluation had to be done by me. As a result of the COVID-19 pandemic and its lockdowns,
user evaluation had to be done individually by me, as traditional methods involving users
were not possible.

Using my personal HCI and UX knowledge in combination with other methods, I was able
to judge the product and evaluate how accessible and effective it was, making appropriate

34

changes. Indeed, my previous knowledge HCI and UX knowledge proved not only beneficial
during the design and development phases, but also to perform user evaluation lacking
users. For instance, I repeatedly tested the application using Android’s accessibility
services to verify that the user experience was as accessible as required, taking notes on
how attention was driven by the layout and the use of colour, finding ways of how to
improve it. Other, less conventional tests were also used, like using the application without
my glasses or contacts to see how accessible it was for people with low vision, or using the
application with my non-dominant hand to verify the UI layout was accessible, a method
borrowed from Epicurious (2020). It is important to note that this method of individual
evaluation was more prone to bias, as there was only one point of view involved, and there
was personal attachment to the application due to having also developed it. Because of this
risk steps were taken to ensure that bias did not cloud the final judgement in all instances
of user evaluation. User evaluation was done multiple times using HCI and UX skills gained
in previous university course, employing a diverse number of methods while trying to
adjust for bias as much as possible.

Although there was no user testing, Roger Broadbent, head of the Dyslexia Institute UK and
a respected expert on accessibility, kindly gave feedback on the gathered user requirements,
planned features, and other more general aspects of the application, helping validate
certain choices. Indeed, mid-way through the development phase, Roger gave feedback
through a Zoom call, in which I did a short demonstration of the application and gave a
rundown of the features that were planned to be implemented. Roger gave praise to the
overall concept of the project and suggested that a history of previously scanned labels was
saved, which was one of the requirements found during the design phase. Feedback from
Roger Broadbent, head of the Dyslexia Institute UK, helped ensure that the application’s
concept, design, and planned features would help make nutrition labels more accessible
for people with dyslexia.

Finally, different automated tools were used to confirm that the application was overall
accessible. While automated tools cannot capture the qualitative nature of user experience,
they are useful in obtaining quantitative data. Indeed, multiple tools are available that
evaluate different aspects that affect the accessibility of a product, like colour contrast or
layout. For this project, the Accessibility Scanner application (Google, 2021g) was used to
identify issues in the design, as seen in Figure 20. The tool takes screenshots while one uses
the application, creating a report listing all the found issues. Indeed, Google (2021g)
revealed problems in text contrast and missing item labels used by screen readers for some
items. The final version of the application was also tested on all three of the themes, with
no suggestions for improvement found for either of them. Automated tools helped make
certain that all accessibility errors made during the design and development stages were
found, helping create a better final product.

35

Figure 20: Accessibility Scanner pointing out that certain user interface elements were not
accessible by assistive services like TalkBack

This chapter has described the methods used for both user and software evaluation,
explaining the impact COVID and the particularity of the project had on these. In the
chapter that follows, the results and conclusions of these evaluations will be presented.

36

Chapter 7

Reflection, Future Work, and
Conclusion

Looking back at the project and the final version of the application, there are many reasons
to be satisfied. Notably, the scanning feature works with a wide array of American FDA
labels, while the pie chart feature provides an effective way of understanding the
information in the label visually. However, some errors and mistakes were also made,
notably in project organisation and the lack of certain planned features. Nonetheless, I
believe that the application serves as a robust base for future development, as well as a
good demonstration of user-centred design while lacking users.

7.1 Project Goals

Many of the original project goals were successfully implemented, while some could not
make it in due to time constraints. Indeed, all the features ranked as ‘MUST’ features are
present. The application is fully accessible, as it is compatible with Android’s assistive
services, and uses accessible fonts and colours. The user experience has also been built
following industry-wide guidelines, using animations, layout, and sound to enhance
feedback. However, some planned features categorised as ‘SHOULD’ features in the design
stage are missing, most notably font customisation. Indeed, the lack of this feature can be
seen as the biggest failure of the project. Nonetheless, the implementation of all the most
important requirements, as well as some of secondary importance, makes this project
overall successful.

Some of the originally planned features were scrapped after development started, with
other requirements not originally found in the first design stage being implemented
instead. Indeed, some requirements were deemed as not necessary or not having
substantial benefit midway through development. For instance, feature of linking to health
websites where users could gain more information about nutrients was scrapped, as it
would create visual clutter for a feature that a simple internet search already accomplishes.
Moreover, as more user evaluation was completed, it became evident that some additional
features needed to be implemented. For example, the ability to select an image from gallery
or share an image to the application was added to make the application work more like
other Android applications that use the camera. While some requirements found during the

37

first design stage were deemed as not necessary by further user evaluation, other features
that were not part of the original project goals were added as important requirements.

This application’s main requirement, scanning labels, works well for a variety of FDA labels,
but flaws in its technical design may limit future development. Despite technically
fulfilling the original requirement, a technical rework would be needed to make scanning
even more robust and versatile.

7.2 Possible Future Work

7.2.1 Short-term objectives

The most important action to do in the short-term would be to conduct extensive user
testing. Indeed, as it has been pointed out multiple times in this paper, it was not possible
to conduct user testing. As such, I cannot say with complete confidence how useful the final
application is, or how adequately it responds to user requirements. User testing would be
used not only to re-explore user requirements, but also to evaluate the user interface and
features of the final application. User testing would therefore be the most significant
short-term change possible to truly make this a project built using user-centred design.

Implementing more of the planned features would also be an improvement to do in the
short-term, most notably the scanning diary and switching fonts features. Indeed, I was
not able to create these features due to time constraints, preferring to focus on polishing
the already existing functionality during the last two weeks rather than implementing
barely functioning features. Being able to switch fonts would be the best way to improve
accessibility for people with dyslexia, as was indicated previously in Chapter 3, while the
scanning diary could help speed up and simplify the process of finding nutritional
information. Implementing these planned features would significantly improve the quality
and usefulness of the product.

38

Figure 21: Prototype of the scanning diary/favourites screen done in the initial design
stage

Finally, small fixes and refinements would help make the app more polished, creating a
better user experience. For instance, when animations are enabled after scanning a label,
the shown progress indicator at the top of the screen might freeze for around 50 frames,
giving the impression that the app lags. This is caused by CameraX passing the captured
image to ML Kit, as this slowdown does not appear when the image is chosen from gallery.
A possible solution to this problem could be creating two separate threads for the UI and
the text recognition. Another potential change could be to increase the use of Fragments
instead of Activities, which would always maintain the bottom navigation present instead
of having it disappear when going to a different Activity, creating a faster and more
polished interaction. Small code changes and fixes could significantly improve the overall
user experience.

39

7.2.2 Long-term objectives

Long-term objectives include features that were originally ranked as ‘WOULD/WON’T’
features using the MoSCoW system, mainly scanning labels other than FDA ones, but also
new features that were not part of the original requirements, like complete localisation.
Indeed, some of these features could help make the product completer and more useful.
For instance, parts of the code have been written to support other languages than English.
In fact, the order of the elements in the detailed scan screen are based on the language
locale the user employs. For example, a user whose phone is configured in English will see
‘Calories 370kcal’, while a user whose phone is configured in Arabic would see ‘370kcal
Calories’ as Arabic uses right-to-left script. An illustration of this can be seen in Figure 22.
Of course, there would need to be a complete localization overhaul for any supported
language, like translating UI text, changing the colours used in pie charts to adapt to
regional differences in interpreting colour, and being able to analyse other labels than
American FDA ones.

Figure 22: Comparison of current behaviour when the phone language is set to English
(left), and when it is set to a language with right-to-left script (right). Localization would

also include text translation of UI elements

40

However, the most important long-term objective would be completely changing the way
nutrition labels are scanned to widen compatibility with different labels, including ones
that do not follow set standards. While the current method works well for FDA labels, it is
not sufficient for other labels, like Australian ones. Indeed, the order in which the text is
recognised is not consistent, as shown in Figure 23. As such, a more technically advanced
method, like recognising text based on its physical position, would be necessary. This
method would be possible to do with just ML Kit’s optical character recognition capabilities,
but it would have trouble with non-standard labels, as the position of the nutrients in the
label could not be predicted. Moreover, optical character recognition sometimes fails and
misreads values. A potential solution to this issue could be taking multiple photos of the
label automatically when the user presses the scan button and displaying the most frequent
value for each nutrient. To build an application that is truly compatible with all nutrient
labels, regardless of country of origin or standardisation, advanced machine learning
methods outside of my field of expertise may be required. Further testing would be required
to find a feasible way to expand this app’s capabilities to all nutrition labels.

Figure 23: Two consecutive partial readings of the same UK nutrition label by ML Kit, with
no predictable element order

7.3 Project Management

While I was able to manage my time efficiently for the most part, in retrospect the start of
development could have been more focused, which could have in turn made it possible to
complete at least one extra feature. As explained in Chapter 4, I used a variety of tools like
GitLab’s issue tracker combined with the MoSCoW prioritisation technique that helped me
organise my work efficiently. However, it is true that during the early stages of
development I did not manage my time properly. Indeed, I started development after the
design phase, around the same time that I needed to start studying for semester exams and
complete other important assignments. After the winter exams and assignments were
done, I experienced burnout. This made it difficult to focus on development, leading to an

41

extremely slow initial progress, which ultimately resulted in development being hampered.
Indeed, during the middle and last phases of development, I was playing catch-up on
development time. Had I managed work and burn out better, it is probable that more
features could have been completed and thereby making a more complete product. Even if
I was able to get organised during development, the start slowed down due to burnout,
restraining the rest of development. In retrospect, a better management of time at the start
of code development could have yielded a more polished application.

7.4 Personal Achievements

This project has been a big learning opportunity and a useful playground to further develop
my user experience skills. I am currently in an HCI degree, which focuses on multiple,
interdisciplinary aspects of user experience. However, despite having multiple course units
surrounding these aspects, I had never had the opportunity to apply my skills practically.
This project has allowed me to not only use the knowledge gained in the user experience
course unit, but also those from other subjects, like psychology, useful for knowing how to
drive attention and perception, and anthropology, which helped me account for cultural
differences in the use of technology. As such, I gained valuable practical experience on
designing and creating good UX that will be extremely useful in the future.

I have also gained valuable experience and knowledge on Android development, a field that
I had never tackled before. Indeed, all my front-end and back-end development before this
project had been done for web applications, and even if I had already created some mobile-
facing interfaces, Android applications work completely differently. Therefore, I had to
learn many fundamental aspects of Android development, like Activities, Fragments,
RecyclerViews, Shared Preferences, and building screen-responsive layouts using XML. As
such, I can now confidently say that I am able to design and develop applications for
Android.

Finally, this project has been an opportunity to learn the Kotlin language. Indeed, almost
the entirety of the codebase was built using Kotlin, a programming language that I had
never used before. Building this project has been a good method of learning the language
and its functional aspects.

7.5 Overall Conclusions

In conclusion, I cannot help but have mixed feelings about this project. On one hand, this
project covers several aspects of computer science, and many of the project goals have been
achieved. On the other hand, better organisation at the start of development could have

42

yielded a better product overall. Nonetheless, I do believe that this application succeeds in
achieving what it was meant to do, making nutrition labels more accessible, and that it
constitutes a good base to continue development in the future.

43

References

Adobe (2021a). Adobe XD (Version 39.0.12). [Windows program]. Available at:
https://www.adobe.com/uk/products/xd.html (Accessed: 26 April 2021).

Adobe (2021b). Adobe XD (Version 39.0.0). [Android program]. Available at:
https://play.google.com/store/apps/details?id=com.adobe.sparklerandroid (Accessed: 26
April 2021).

Adobe (2021c). Accessible color palette generator | Adobe Color. Available at:
https://color.adobe.com/create/color-accessibility (Accessed: 27 April 2021).

Arhippainen, L. & Tähti, M. (2003). ‘Empirical evaluation of user experience in two
adaptive mobile application prototypes’, MUM 2003. Proceedings of the 2nd International
Conference on Mobile and Ubiquitous Multimedia, December 2003. Citeseer. pp. 27-34.
Available at:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.7147&rep=rep1&type=pdf
(Accessed: 26 April 2021).

Budiu, R. (2020). ‘Dark Mode vs. Light Mode: Which Is Better?’, Nielsen Norman Group, 2
February [Online]. Available at: https://www.nngroup.com/articles/dark-mode/
(Accessed: 27 April 2021).

MyFitnessPal, Inc. (2021). MyFitnessPal (Version 21.5.1). [Android program]. Available at:
https://play.google.com/store/apps/details?id=com.myfitnesspal.android (Accessed: 25
March 2021).

Bjorn the UX Dog (2020). ‘Accessibility: how to involve dyslexic users into your design’,
UX Collective, April 12. Available at: https://uxdesign.cc/accessibility-how-to-involve-
dyslexic-users-into-your-design-aab031ee588d (Accessed: 24 April 2021).

Boyarski, D., Neuwirth, C., Forlizzi, J. & Regli, S. H. (1998). 'A study of fonts designed for
screen display', Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, Los Angeles, California, USA. 18th – 23rd April 1998. Los Angeles, California, USA:
ACM Press/Addison-Wesley Publishing Co., pp. 87–94.

Brewster, S. A., Wright, P. C. & Edwards, A. D. N. (1993). 'An evaluation of earcons for use
in auditory human-computer interfaces', Proceedings of the INTERACT '93 and CHI '93
Conference on Human Factors in Computing Systems, Amsterdam, The Netherlands. 24-29
April 1993. Association for Computing Machinery. pp. 222–227. Available at:
https://doi.org/10.1145/169059.169179 (Accessed: 07 April 2021).

https://www.adobe.com/uk/products/xd.html
https://play.google.com/store/apps/details?id=com.adobe.sparklerandroid
https://color.adobe.com/create/color-accessibility
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.7147&rep=rep1&type=pdf
https://www.nngroup.com/articles/dark-mode/
https://play.google.com/store/apps/details?id=com.myfitnesspal.android
https://uxdesign.cc/accessibility-how-to-involve-dyslexic-users-into-your-design-aab031ee588d
https://uxdesign.cc/accessibility-how-to-involve-dyslexic-users-into-your-design-aab031ee588d
https://doi.org/10.1145/169059.169179

44

Buchenau, M. & Suri, J. F. (2000) 'Experience prototyping', Proceedings of the 3rd
conference on Designing interactive systems: processes, practices, methods, and techniques,
New York City, New York, USA. August 2000. Association for Computing Machinery. pp.
424–433. Available at: https://doi.org/10.1145/347642.347802 (Accessed: 26 April 2021).

Chen, A. (2019). ‘The controversy of accessible type’, Queer Design Club, 12 October.
Available at: https://medium.com/queer-design-club/the-controversy-of-accessible-
type-8def04eb8808 (Accessed: 27 April 2021).

Clary, P. (2019). ‘With Lookout, discover your surroundings with the help of AI’, The
Keyword, 12 March. Available at: https://www.blog.google/outreach-
initiatives/accessibility/lookout-discover-your-surroundings-help-ai/ (Accessed: 21
March 2021).

Consumer Affairs Agency (2020). 栄養成分表示. Tokyo, Japan. Available at:

https://www.caa.go.jp/policies/policy/food_labeling/health_promotion/assets/food_lab
eling_cms206_20210318_01.pdf (Accessed: 26 April 2020).

Department of Health (2016). Guide to creating a front of pack (FoP) nutrition label for pre-
packed products sold through retail outlets. Available at:
https://www.gov.uk/government/publications/front-of-pack-nutrition-labelling-
guidance (Accessed: 10 April 2021).

Epicurious (2020). 5 Egg Kitchen Gadgets Tested by Design Expert | Well Equipped | Epicurious
[YouTube]. Available at: https://www.youtube.com/watch?v=byiVjrJaOnc (Accessed: 28
April 2021).

Food and Drug Administration (2016). Food Labeling: Revision of the Nutrition and
Supplement Facts Labels. Available at: https://www.regulations.gov/document/FDA-2012-
N-1210-0875 (Accessed: 10 April 2021).

GitLab (2021). Iterate faster, innovate together | GitLab. Available at:
https://about.gitlab.com/ (Accessed: 06 April 2021).

Goldstein, E.B. (2016). ‘Perceiving Objects and Scenes’, in Brockmole, J.R. (eds.) Sensation
and perception. 10th edn. Cengage [Online], pp.92-123. Available at:
https://read.kortext.com/reader/epub/282538 (Accessed: 27 April 2021).

Google (2021a). Homepage – Material Design. Available at: https://material.io/ (Accessed:
25 April 2021).

Google (2021b). Bottom navigation – Material Design. Available at:
https://material.io/components/bottom-navigation#research (Accessed: 27 April 2021).

https://doi.org/10.1145/347642.347802
https://medium.com/queer-design-club/the-controversy-of-accessible-type-8def04eb8808
https://medium.com/queer-design-club/the-controversy-of-accessible-type-8def04eb8808
https://www.blog.google/outreach-initiatives/accessibility/lookout-discover-your-surroundings-help-ai/
https://www.blog.google/outreach-initiatives/accessibility/lookout-discover-your-surroundings-help-ai/
https://www.caa.go.jp/policies/policy/food_labeling/health_promotion/assets/food_labeling_cms206_20210318_01.pdf
https://www.caa.go.jp/policies/policy/food_labeling/health_promotion/assets/food_labeling_cms206_20210318_01.pdf
https://www.gov.uk/government/publications/front-of-pack-nutrition-labelling-guidance
https://www.gov.uk/government/publications/front-of-pack-nutrition-labelling-guidance
https://www.youtube.com/watch?v=byiVjrJaOnc
https://www.regulations.gov/document/FDA-2012-N-1210-0875
https://www.regulations.gov/document/FDA-2012-N-1210-0875
https://about.gitlab.com/
https://read.kortext.com/reader/epub/282538
https://material.io/
https://material.io/components/bottom-navigation#research

45

Google (2021c). Android | The platform pushing what’s possible. Available at:
https://www.android.com/ (Accessed: 07 April 2021).

Google (2021d). Download the official Android IDE and developer tools to build apps for
Android phones, tablets, wearables, TVs, and more. Available at:
https://developer.android.com/studio (Accessed: 07 April 2021).

Google (2021e). Getting Started with CameraX. Available at:
https://codelabs.developers.google.com/codelabs/camerax-getting-started#0 (Accessed:
04 April 2021).

Google (2021f). Text Recognition | ML Kit | Google Developers. Available at:
https://developers.google.com/ml-kit/vision/text-recognition (Accessed: 06 April 2021).

Google (2021g). Accessibility Scanner (Version 2.2.1.351925010) [Android program].
Available at:
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.aud
itor (Accessed: 29 April 2021).

Graham, D. J., Orquin, J. L. & Visschers, V. H. M. (2012). 'Eye tracking and nutrition label
use: A review of the literature and recommendations for label enhancement', Food Policy,
37(4), pp. 378-382. Available at: https://doi.org/10.1016/j.foodpol.2012.03.004 (Accessed:
24 April 2021).

Guest (2016). ‘Accessibility and me: Dealing with dyslexia’, Accessibility in government, 15
November. Available at: https://accessibility.blog.gov.uk/2016/11/15/accessibility-and-
me-dealing-with-dyslexia/ (Accessed: 24 April 2021).

Harper, S. (2020). UX from 30,000ft. Leanpub. [Online]. Available at:
https://leanpub.com/UX/read (Accessed: 26 March 2021).

Iniesto, F., McAndrew, P., Minocha, S. & Coughlan, T. (2016). 'The current state of
accessibility of MOOCs: What are the next steps?', Proceedings of Open Education Global
2016: Convergence Through Collaboration, Krakow, Poland. 12-14 Apr 2016. Available at:
https://conference.oeglobal.org/2016/presentation/the-current-state-of-accessibility-
of-moocs-what-are-the-next-steps/ (Accessed: 20 March 2021).

International Telecommunication Union (2020). Measuring digital development: Facts and
figures 2020. Available at: https://www.itu.int/en/ITU-
D/Statistics/Documents/facts/FactsFigures2020.pdf (Accessed: 26 March 2021).

Jahoda, P. (2019). MPAndroidChart (Version 3.1.0) [Android library]. Available at:
https://github.com/PhilJay/MPAndroidChart/releases/tag/v3.1.0 (Accessed: 26 April
2021).

https://www.android.com/
https://developer.android.com/studio
https://codelabs.developers.google.com/codelabs/camerax-getting-started#0
https://developers.google.com/ml-kit/vision/text-recognition
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://doi-org.manchester.idm.oclc.org/10.1016/j.foodpol.2012.03.004
https://accessibility.blog.gov.uk/2016/11/15/accessibility-and-me-dealing-with-dyslexia/
https://accessibility.blog.gov.uk/2016/11/15/accessibility-and-me-dealing-with-dyslexia/
https://leanpub.com/UX/read
https://conference.oeglobal.org/2016/presentation/the-current-state-of-accessibility-of-moocs-what-are-the-next-steps/
https://conference.oeglobal.org/2016/presentation/the-current-state-of-accessibility-of-moocs-what-are-the-next-steps/
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2020.pdf
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2020.pdf
https://github.com/PhilJay/MPAndroidChart/releases/tag/v3.1.0

46

Kieffer, S., Ghouti, A., Macq, B. (2017). ‘The Agile UX Development Lifecycle: Combining
Formative Usability and Agile Methods’, Proceedings of the 50th Hawaii International
Conference on System Sciences, Hilton Waikoloa Village, Hawaii. 4th-7th January 2017.
Available at: https://aisel.aisnet.org/hicss-50/cl/hci/7/ (Accessed: 29 March 2021).

Lardinois, F. (2019). ‘Kotlin is now Google’s preferred language for Android app
development’, TechCrunch, 7 May [Online]. Available at:
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-
android-app-development/ (Accessed: 06 March 2021).

mano1990 (2018). ‘This sub should be designed with Opendyslexic.’, r/Dyslexia [Reddit] 1
December. Available at:
https://www.reddit.com/r/Dyslexia/comments/a23yoz/this_sub_should_be_designed
_with_opendyslexic/ (Accessed: 27 April 2021).

Matthews, T., Judge, T. & Whittaker, S. (2012). 'How do designers and user experience
professionals actually perceive and use personas?', Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, Austin, Texas, USA: Association for Computing
Machinery. pp. 1219–1228. Available at: https://doi.org/10.1145/2207676.2208573
(Accessed: 24 April 2021).

Ministerio de Salud (2018). Manual de Etiquetado Nutricional de Alimentos. Santiago, Chile.
Available at: https://www.minsal.cl/wp-content/uploads/2018/01/Manual-Etiquetado-
Nutricional-Ed.-Minsal-2017v2.pdf (Accessed: 10 April 2021).

MyFitnessPal, Inc. (2021). MyFitnessPal (Version 21.5.1). [Android program]. Available at:
https://play.google.com/store/apps/details?id=com.myfitnesspal.android (Accessed: 25
March 2021).

Nielsen, J. (1996). Accessible Design for Users With Disabilities. Nielsen Norman Group, 30
September [Online]. Available at: https://www.nngroup.com/articles/accessible-design-
for-users-with-disabilities/ (Accessed: 24 April 2021).

Norman, D. (2013). The Design of Everyday Things: Revised and Expanded Edition. New York:
Basic Books.

Perea, M., Panadero, V., Moret-Tatay, C., Gómez, P. (2012). ‘The effects of inter-letter
spacing in visual-word recognition: Evidence with young normal readers and
developmental dyslexics’, Learning and Instruction, 22(6), pp. 420-430. Available at:
https://doi.org/10.1016/j.learninstruc.2012.04.001 (Accessed: 11 April 2021).

Peres, A. L., Da Silva, T., Silva, F. S., Soares, F. F., Rosemberg, C. & Romero, S. (2014).
‘Agileux model: Towards a reference model on integrating ux in developing software
using agile methodologies’, 2014 Agile Conference, Kissimmee, FL, USA. 28 July-1 August

https://aisel.aisnet.org/hicss-50/cl/hci/7/
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-app-development/
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-app-development/
https://www.reddit.com/r/Dyslexia/comments/a23yoz/this_sub_should_be_designed_with_opendyslexic/
https://www.reddit.com/r/Dyslexia/comments/a23yoz/this_sub_should_be_designed_with_opendyslexic/
https://doi.org/10.1145/2207676.2208573
https://www.minsal.cl/wp-content/uploads/2018/01/Manual-Etiquetado-Nutricional-Ed.-Minsal-2017v2.pdf
https://www.minsal.cl/wp-content/uploads/2018/01/Manual-Etiquetado-Nutricional-Ed.-Minsal-2017v2.pdf
https://play.google.com/store/apps/details?id=com.myfitnesspal.android
https://www.nngroup.com/articles/accessible-design-for-users-with-disabilities/
https://www.nngroup.com/articles/accessible-design-for-users-with-disabilities/
https://doi.org/10.1016/j.learninstruc.2012.04.001

47

2014. IEEE. pp. 61-63. Available at: https://doi.org/10.1109/AGILE.2014.15 (Accessed: 29
March 2021).

Petrie, H. & Bevan, N. (2009). 'The evaluation of accessibility, usability, and user
experience', The universal access handbook, 1, pp. 1-16.

Rello, L. & Baeza-Yates, R. (2013). 'Good fonts for dyslexia', Proceedings of the 15th
International ACM SIGACCESS Conference on Computers and Accessibility, Bellevue,
Washington. October 2013. Association for Computing Machinery. Article 14, pp. 1-8.
Available at: https://doi-org.manchester.idm.oclc.org/10.1145/2513383.2513447
(Accessed: 27 April 2021).

Rello, L. (2015). 'Dyslexia and web accessibility: Synergies and challenges', Proceedings of
the 12th International Web for All Conference, Florence, Italy. 18-20 May 2015. Association
for Computing Machinery, Article 9, pp. 1-4. Available at:
https://doi.org/10.1145/2745555.2746655 (Accessed: 27 April 2021).

Resorization (2019). ‘What do you think about the OpenDyslexic font? Did it help you? I
consider changing my Linux-PC 's fonts to it.’, r/Dyslexia [Reddit] June 19. Available at:
https://www.reddit.com/r/Dyslexia/comments/c2dyf1/what_do_you_think_about_the
_opendyslexic_font_did/ (Accessed: 27 April 2021).

Rettig, M. (1992). 'Hat racks for understanding', Commun. ACM, 35(10), pp. 21–24.
Available at: https://doi.org/10.1145/135239.135247 (Accessed: 20 April 2021).

Rothstein, E. (2009). ‘Typography Fans Say Ikea Should Stick to Furniture’, The New York
Times, 4 September [Online]. Available at:
https://www.nytimes.com/2009/09/05/arts/design/05ikea.html (Accessed: 27 April
2021).

Southey, F. (2020). ‘Nutrition labels overlooking the blind: “I am massively
disadvantaged when it comes to food choices”’, Food Navigator, 20 February [Online].
Available at: https://www.foodnavigator.com/Article/2020/02/19/Are-food-labels-
excluding-the-visually-impaired (Accessed: 11 April 2021).

Spina, C. (2019). ‘WCAG 2.1 and the Current State of Web Accessibility in Libraries’, Weave
Journal Of Library User Experience, 2(2) [Online]. Available at:
https://doi.org/10.3998/weave.12535642.0002.202 (Accessed: 20 March 2021).

Stark Lab (2021). Stark [Computer program]. Available at: https://www.getstark.co/
(Accessed: 27 April 2021).

Tufte, E. R. (1985). ‘Aesthetics and Technique in Data Graphical Design’ in The Visual
Display of Quantitative Information. 2nd edn. Cheshire, CT: Graphics Press.

https://doi.org/10.1109/AGILE.2014.15
https://doi-org.manchester.idm.oclc.org/10.1145/2513383.2513447
https://doi.org/10.1145/2745555.2746655
https://www.reddit.com/r/Dyslexia/comments/c2dyf1/what_do_you_think_about_the_opendyslexic_font_did/
https://www.reddit.com/r/Dyslexia/comments/c2dyf1/what_do_you_think_about_the_opendyslexic_font_did/
https://doi.org/10.1145/135239.135247
https://www.nytimes.com/2009/09/05/arts/design/05ikea.html
https://www.foodnavigator.com/Article/2020/02/19/Are-food-labels-excluding-the-visually-impaired
https://www.foodnavigator.com/Article/2020/02/19/Are-food-labels-excluding-the-visually-impaired
https://doi.org/10.3998/weave.12535642.0002.202
https://www.getstark.co/

48

United States Department of Agriculture (2019). Example of Sticker Label [Illustration].
Available at:
https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=F
ood%20and%20Agricultural%20Import%20Regulations%20and%20Standards%202018
%20_Dubai_United%20Arab%20Emirates_5-1-2019.pdf (Accessed: 26 April 2021).

Van den Rul, C. (2019). ‘On the Dyslexic Mind’, The Ascent, September 3. Available at:
https://medium.com/the-ascent/on-the-dyslexic-mind-f6ddb43915d (Accessed: 24
April 2021).

Veroniiiica (2018). ‘My Eight Favorite Free Fonts for Print Disabilities’, Perkins eLearning,
14 August. Available at: https://www.perkinselearning.org/technology/blog/my-eight-
favorite-free-fonts-print-disabilities (Accessed: 27 April 2021).

WebAIM (2021). WebAIM: Contrast Checker. Available at:
https://webaim.org/resources/contrastchecker/ (Accessed: 27 April 2021).

World Health Organization (2010). Global Data on Visual Impairments 2010. Geneva: World
Health Organization. Available at:
https://www.who.int/blindness/publications/globaldata/en/ (Accessed: 11 April 2021).

xueli (2015). ‘I downloaded the opendyslexic font and found that it was much easier for
me to read’, r/Dyslexia [Reddit] 21 July. Available at:
https://www.reddit.com/r/Dyslexia/comments/3e2fip/i_downloaded_the_opendyslexic
_font_and_found_that/ (Accessed: 27 April 2021).

Yan, S. & Ramachandran, P. G. (2019). 'The current status of accessibility in mobile apps',
ACM Trans. Access. Comput., 12(1), p. Article 3 [Online]. Available at:
https://dl.acm.org/doi/abs/10.1145/3300176 (Accessed: 20 March 2021).

Yuan, B., Folmer, E. & Harris, F. C. (2011). 'Game accessibility: A survey', Universal Access in
the Information Society, 10(1), pp. 81-100 [Online]. Available at:
https://doi.org/10.1007/s10209-010-0189-5 (Accessed: 20 March 2021).

https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Food%20and%20Agricultural%20Import%20Regulations%20and%20Standards%202018%20_Dubai_United%20Arab%20Emirates_5-1-2019.pdf
https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Food%20and%20Agricultural%20Import%20Regulations%20and%20Standards%202018%20_Dubai_United%20Arab%20Emirates_5-1-2019.pdf
https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Food%20and%20Agricultural%20Import%20Regulations%20and%20Standards%202018%20_Dubai_United%20Arab%20Emirates_5-1-2019.pdf
https://medium.com/the-ascent/on-the-dyslexic-mind-f6ddb43915d
https://www.perkinselearning.org/technology/blog/my-eight-favorite-free-fonts-print-disabilities
https://www.perkinselearning.org/technology/blog/my-eight-favorite-free-fonts-print-disabilities
https://webaim.org/resources/contrastchecker/
https://www.who.int/blindness/publications/globaldata/en/
https://www.reddit.com/r/Dyslexia/comments/3e2fip/i_downloaded_the_opendyslexic_font_and_found_that/
https://www.reddit.com/r/Dyslexia/comments/3e2fip/i_downloaded_the_opendyslexic_font_and_found_that/
https://dl.acm.org/doi/abs/10.1145/3300176
https://doi.org/10.1007/s10209-010-0189-5

49

Appendices

Appendix 1 –Examples of Nutrition Labels
Around the World

UK nutrition label for a cup of yogurt

Japanese standard for nutrition labels (Source: Consumer Affairs Agency, 2020)

Australian nutrition label

50

Examples of FDA standard nutrition labels (Source: Food and Drug Administration, 2016)

Canadian bilingual nutrition label from the Québec region

51

Nutrition label in Chile and packaging using warning signs for high contents of given nutrients
(Source: Ministerio de Salud, 2018)

Examples of Taiwanese nutrition label standards (Source: Taiwan Food and Drug
Administration, 2014)

52

Appendix 1 References

Consumer Affairs Agency (2020). 栄養成分表示. Tokyo, Japan. Available at:

https://www.caa.go.jp/policies/policy/food_labeling/health_promotion/assets/food_lab
eling_cms206_20210318_01.pdf (Accessed: 26 April 2020).

Food and Drug Administration (2016). The New Nutrition Facts Label – Examples of Different
Label Formats. Available at: https://www.regulations.gov/document/FDA-2012-N-1210-
0875 (Accessed: 27 April 2021).

Ministerio de Salud (2018). Manual de Etiquetado Nutricional de Alimentos. Santiago, Chile.
Available at: https://www.minsal.cl/wp-content/uploads/2018/01/Manual-Etiquetado-
Nutricional-Ed.-Minsal-2017v2.pdf (Accessed: 10 April 2021).

Taiwan Food and Drug Administration (2014). 包裝食品營養標示應遵行事項總說明. Republic

of China. Available at:
file:///C:/Users/User/Downloads/%E5%8C%85%E8%A3%9D%E9%A3%9F%E5%93%81
%E7%87%9F%E9%A4%8A%E6%A8%99%E7%A4%BA%E6%87%89%E9%81%B5%E8
%A1%8C%E4%BA%8B%E9%A0%85%E7%B8%BD%E8%AA%AA%E6%98%8E%E5%8
F%8A%E9%80%90%E9%BB%9E%E8%AA%AA%E6%98%8E.pdf (Accessed: 26 April
2021).

https://www.caa.go.jp/policies/policy/food_labeling/health_promotion/assets/food_labeling_cms206_20210318_01.pdf
https://www.caa.go.jp/policies/policy/food_labeling/health_promotion/assets/food_labeling_cms206_20210318_01.pdf
https://www.regulations.gov/document/FDA-2012-N-1210-0875
https://www.regulations.gov/document/FDA-2012-N-1210-0875
https://www.minsal.cl/wp-content/uploads/2018/01/Manual-Etiquetado-Nutricional-Ed.-Minsal-2017v2.pdf
https://www.minsal.cl/wp-content/uploads/2018/01/Manual-Etiquetado-Nutricional-Ed.-Minsal-2017v2.pdf

53

Appendix 2 – Low Fidelity Mockups

54

55

56

57

58

Appendix 3 – Other Design Artefacts

Personas and scenarios created to better understand the target users

59

Interaction flowchart

Prototype splash screen, scrapped to make the application feel faster at start up

60

Two prototype concepts for the scanning screen, using different camera frames to drive the
attention of the user and get them to focus closely on the label

61

Prototype feedback dialogs. The final version of these dialogs have significant changes to better
conform to Material guidelines

62

Prototype screens for a new scan on the left, and a saved scan on the right

63

Prototype screen for the history of previously scanned labels. Users would have been able to set
custom photos of the product to faster recognise it when browsing the list, with the default

photo being that of the scanned nutrition label.

	Introduction
	[INTRO]
	1.1 Background
	[TEXT]
	[Talk
	about different kinds of nutritional labels, add 2-3 images, and then a huge appendix]
	Background
	Conception and Design
	32.1 Conception
	32.1.1 Finding an idea
	32.1.2 Improving previous solutions

	32.2 User Experience Design
	32.2.1 Gathering user requirements
	32.2.2 Modelling user requirements
	32.2.3 Mockups and prototyping

	32.3 User Interface Design
	32.3.1 Design language
	32.3.22 An emphasis on typographyMockups
	32.3.32 Ensuring accessibilityMockups

	32.4 Iterative Design

	Development
	43.1 Management of Work
	43.2 Platforms
	43.2.1 Deployment platform
	43.2.2 Development platformenvironment

	43.3 Programming Language
	43.4 ML Kit
	43.5 User Interface
	43.5.1 Building layouts
	43.5.2 Enhancing feedback
	43.5.3 Customisability and accessibility

	43.6 MPAndroidChart

	Results
	Evaluation
	654.1 Not done IRL (yet)Professional EvaluationSoftware Evaluation
	6.2 User Evaluation

	Reflection, Future Work, and Conclusion
	765.1 Project Goals
	76.2 Possible Future Work
	765.12.1 2 Possible future workShort-term objectives
	76.2.2 Long-term objectives

	765.32 Project Management
	765.4 Personal Achievements (????)
	76.5 Overall Conclusions

	References
	Chaudhary, U., Birbaumer, N. & Ramos-Murguialday, A. (2016). 'Brain-computer interfaces in the completely locked-in state and chronic stroke', Prog Brain Res, 228, pp. 131-61 [Online]. Available at: https://doi.org/10.1016/bs.pbr.2016.04.019 (Accessed...
	Appendices
	Appendix 1 References

